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Synchronization of bursting neurons with delayed chemical synapses
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The synchronization of bursting Hindmarsh-Rose neurons coupled by a time-delayed fast threshold modu-
lation synapse was studied. It is shown that there is a domain of the coupling parameter and nonzero time-lag
values such that the bursting neurons are exactly synchronized. Furthermore, and contrary to the case of
electrical synapses, such synchronous bursting is stochastically stable.
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I. INTRODUCTION

Synchronized neuronal activity has been observed at all
levels of the nervous system and has been suggested as par-
ticularly important in information processing [1-3]. The
most common type of neuronal dynamics and synaptic con-
nections is that of bursting and relatively complicated chemi-
cally mediated synapses. It is well known that the properties
of synchronization between electrically and chemically
coupled bursting neurons are quite different [4]. In this paper
we shall analyze the synchronization of bursting neurons
coupled by chemical synapses under realistic conditions that
include synaptic time delays and noise. In particular, we shall
stress the important differences that occur between the ef-
fects of time delay in the synaptic connections on the syn-
chronization of electrically versus chemically coupled burst-
ing neurons.

There are two different broad types of single-neuron os-
cillatory dynamics [5]: (a) Bursting is a neuronal activity
such that a neuron fires two or more spikes followed by a
period of quiescence, which is again followed by similar
periods of spiking and quiescence; (b) spiking is the dynami-
cal regime when a sequence of spikes continues, more or less
regularly, for a relatively large period of time uninterrupted
by periods of quiescence. It is believed that a burst of spikes
is more reliable than a single spike in producing responses in
postsynaptic neurons. However, synchronization between
bursting neurons has been much less studied than the syn-
chronization between simple or chaotic oscillators.

Two general types of synaptic connection between neu-
rons called electrical (or gap junction) and chemical are
clearly distinguished. The chemical synapses are much more
common, and the synaptic transmission time is especially
significant for synapses of the chemical type, as opposed to
electrical synapses. It is well known that the explicit time lag
in modeling of a synaptic connection of physically reason-
able duration can have profound effects on the dynamics of
coupled neurons [6—8] (see also [9] and the references
therein). For example, an important effect that has been re-
cently demonstrated [10,11] is that the time delay facilitates
exact synchronization among bursting electrically coupled
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neurons. On the other hand, mathematical models of oscilla-
tory neurons coupled by instantaneous chemical synapses are
much more difficult to synchronize than those with instanta-
neous electrical synapses. We shall see that sufficient time
delay in a specific model of the chemical synapse leads to
synchronization of bursting dynamics that is stochastically
stable under perturbation by small noise, in contrast to the
case of the same bursting neurons synchronized by delayed
electrical coupling [12].

The paper is organized as follows. In the next section we
present the model of two bursting neurons coupled by a
chemical synapse with an explicit time lag that we shall ana-
lyze. Each of the neurons is modeled by the Hindmarsh-Rose
equations, and for the chemical synapse we use the so-called
fast threshold modulation (FTM) model with explicit time
lag. In Sec. III we derive delay-differential equations for
small deviations from the manifold of the exact synchroni-
zation that we used to study the stability of the synchroniza-
tion. The equations are analogous to those derived in [10] for
Hindmarsh-Rose neurons coupled by delayed electrical syn-
apses. The results of our analysis of the effects of the synap-
tic time delay on the bursting dynamics and synchronization
are presented in Sec. IV. There we also discuss the effects of
small white noise on the stability of the time-delay-induced
synchronous dynamics. The paper is summarized in Sec. V.

II. THE MODEL

An elementary current-based model of bursting behavior
in real neurons requires three variables and is of the form of
the Hindmarsh-Rose (HR) equations [13,6], given by

)&=y+bx2—ax3—z+l,
y=c—dx’-y,

Z=—rz+rS(x—xp), (1)

where x is the membrane potential, y represents the fast cur-
rent, like that of Na* or K*, and z corresponds to the slow
current, for example, a current of Ca*. Slow oscillations of
the z variable drive the fast subsystem (x,y) through periods
of oscillatory and quiescent behavior. The constant parameter
I in the model (1) represents the external current and is the
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bifurcation parameter, determining its qualitative behavior.
When /=0 there can be only one stable stationary solution of
(1) and it corresponds to the stable quiescence behavior of
the neuron. However, for constant / in the domain [/
€(2.92,3.40), and for commonly used values of the other
parameters S=4.0, r=0.006, xo=-1.6, a=1, b=3, c=1, and
d=5, the model (1) describes chaotic bursting, i.e., a series of
spikes that are chaotically interspersed with refractory peri-
ods and quiescence behavior [14]. In our analysis, the param-
eter values for each neuron are fixed precisely to such values
I=3.2 that imply chaotic bursting of the isolated units.

In order to model the coupling among neurons by a
chemical synapse, we shall use the so-called fast threshold
modulation scheme proposed by Somers and Kopell in 1993
[15] and often used by others, e.g., [4]. The form of the FTM
coupling that we shall use, which explicitly incorporates the
synaptic time lag, is given by the following function:

1
1 +exp[— k(x5 - 6,)]

Jxx3) ==-gl; - V) (2)
The variable parameter g is the coupling strength between
the first neuron at time ¢ and its neighbor at some previous
time #—7. Thus, x;=x,(r— 7). The coupling model (2) when
7=0 is called fast, because it does not incorporate any real
synaptic dynamics. The model exhibits either a hard or a
more gradual thresholdlike behavior, depending on the size
of the parameter k, with k— oo corresponding to the hard
threshold. The type of coupling is characterized by the sign
of the difference between the synaptic reversal potential, de-
noted V,, and the synaptic potential x. A positive or negative
sign of the difference corresponds to an excitatory or inhibi-
tory effect of the synapse. In this paper the values of the
parameters 6, V,, and k will be held fixed as 6,=-0.25, V,
=2, and k=10.

Our aim in this paper is to analyze the possibility and
stability of the synchronized dynamics of a pair of delayed
coupled chaotically bursting HR neurons, given by the fol-
lowing delay-differential equations (DDE’s):

X =y +3x%—x?—z] + 1+ f(x,x7),
yl: 1 _Sx%_yl,
Zy=—rz; +rS(x; + 1.6),

Ky =Y+ 305 = X5 — 5+ 1+ flag,x]),

. 2
y2=1=5x3-ys,

22=—rZ2+rS(X2+1.6). (3)

The time delay plays a crucial role in the dynamics of the
coupled system (3). For example, similarly to the case of
electrically time-delayed coupled bursters [7] or relaxation
oscillators [3,9], the time lag in a certain domain leads to
stabilization of the quiescent behavior, i.e., to the phenom-
enon of oscillation death. Furthermore, it has been shown
that the time delay facilitates exact synchronization among
bursting electrically coupled neurons [10]. However, such

PHYSICAL REVIEW E 78, 036211 (2008)

time-delay-induced synchronization with electrical coupling
is unstable under arbitrary small white noise [12].

The main result of our analysis of synchronization in the
standard HR model of bursting is that, similarly to the elec-
trical coupling, the time delay in FTM coupling facilitates
exact synchronization, and, in contrast to the electrical cou-
pling, such synchronous bursting is stochastically stable. In
fact, we have found several combinations of the parameter
values in model (3) such that the bursting dynamics of a pair
of instantaneously FTM-coupled HR neurons in the form (3)
with 7=0 cannot be bursting and exactly synchronous for
any value of the coupling strength, but an appropriate time
delay in the FTM coupling, and the same values of the pa-
rameters, lead to exactly synchronous bursting. This is not in
contradiction with the results presented in [4]. There, the
authors used a model of bursting dynamics similar to but
different from (1), and proved, using the standard Lyapunov
function, that sufficiently strong instantaneous FTM coupling
can lead to stability of exact synchronization. However,
nothing can be claimed about the nature of the exactly syn-
chronous solution established using the Lyapunov function.
It could be stationary or oscillatory or bursting, depending on
the parameter values. Nevertheless, the authors give an ex-
ample of parameter values for their model such that suffi-
ciently strong instantaneous coupling implies exactly syn-
chronous bursting. However, we were not able to find a
single combination of the parameter values such that the
standard form of the HR bursters (1), instantaneously FTM
coupled [as in Eq. (3)], leads to exactly synchronous bursting
dynamics. As we pointed out, for all combinations of the
parameters in the model (3) with 7=0 that we have analyzed
numerically for parameter values corresponding to chaoti-
cally bursting HR neurons, the stable synchronous solution
achieved with sufficiently strong instantaneous coupling is in
fact a stationary point. As we shall see, the time delay
changes the situation.

II1. LINEAR STABILITY ANALYSIS
OF SYNCHRONIZATION

In the system of coupled bursting neurons (3), one can
think of different degrees of synchronization. For example, a
type of weak synchronization is achieved when the bursts in
the two units occur roughly at the same time without syn-
chronization of spikes within the bursts. The strongest type
of synchronous dynamics is exact synchronization. The two
neurons in Egs. (3) are exactly synchronous if the following
conditions are satisfied for all #:

6z=71-2,=0.
(4)

In order to study the stability of the exact synchronization of
the system (3) we have employed the method of numerical
calculation of the Lyapunov exponent near the stationary so-
lution of the equations that describe the dynamics of small
deviations from the manifold of exact synchronization [10].

On the synchronization manifold (4) the dynamical equa-
tion are

x=x—-x,=0, 6y=y,-y,=0,
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i=—x 4307+ y—z+ T+ f(x,x7),
y=1-5x*-y,
i=—rz+rS(x+1.6),

X=X1=X, Y=V1=)Y2» 2I=21=22- (5)

The motion transverse to the synchronization manifold can
be described in terms of infinitesimally small variations Ox
~o(x), dy~o(y), 8z~ o(z) by the equations

S =—3x25x + 6x5x + oy — Oz
k exp[— k(x"— 6,)]

+g<(x" Y s oxpl—k— 6, D

ox )
1 +exp[—k(x™= 6]/
Sy =—10x6x — dy,
Sz=rséx—-roz, (6)
where we have used x]—x3~ 2xdx, x;—x3=3x?x, and
! 1)
1 +exp[— kx"+ k6] "
k exp[— kx™+ k6,] )

[1+exp(— ke + kO)E " )

f(-xl’-xg) _f(-XZ’xD -~ = g(

- (x_ V?)

Equations (6) can be treated as a nonautonomous system
of DDE’s for the dynamics of small variations &x, dy, oz
where the time dependences of x,y,z are determined by Eq.
(4). Stability of the stationary solution (&x, dy, 8z)=(0,0,0)
corresponds to the stability of the synchronous dynamics of
(3). The synchronization manifold is stable or unstable de-
pending on whether the solutions of (6) [x(), ov(z), 8z(1)]
shrink to zero or grow asymptotically as r— . A sufficient
condition for the stability is that the largest Lyapunov expo-
nent associated with (6) is negative. The largest Lyapunov
exponent of (6), which can be obtained by numerical solu-
tions of the joint equations (6) and (5), thus provides infor-
mation about the local stability of the synchronization mani-
fold.

IV. DOMAINS AND STABILITY
OF SYNCHRONIZED BURSTING

We have studied the conditions for synchronization on
parameters ¢ and 7 by numerical solutions of Egs. (3), (5),
and (6). The results of these calculations are presented in this
section, and enable us to form a clear picture of possible
qualitatively different dynamical regimes of the system of
bursters coupled by delayed FTM coupling. We have re-
stricted our attention to the domain of initial states near the
stationary solution of the system (3), and the main questions
that we wanted to answer are (a) what are the values of g and
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FIG. 1. Domains in (g, 7) parameter plane that imply stability of
stationary state (light gray), instability of the stationary state with
asynchronous bursting (gray), and instability of the stationary state
with synchronous bursting (black).

7 for which the stationary solution is unstable and the initial
states close to the stationary solution lead to bursting dynam-
ics; (b) for which values of g and 7 is such bursting dynamics
exactly synchronous; and (c) is such exactly synchronous
dynamics qualitatively perturbed by small noise.

The computations of the largest Lyapunov exponent near
the stationary solution for the DDE system (3) and for the
motion transverse to the synchronization manifold (5) are
used to determine the domain of (g, 7) parameters that imply
stability or instability of the stationary solution and of the
synchronization manifold, respectively. These computations
are also compared with direct observations of numerical so-
lutions of Eq. (3). The computations show that there is a
domain (black in Fig. 1) such that the stationary solution is
unstable but the synchronization manifold is stable. The
stable dynamics of the neurons for (g, 7) in that domain is
exactly synchronized bursting.

Qualitatively different types of dynamics are illustrated in
Figs. 2 and 3. The values of the fixed parameters are such
that the stationary solution of the uncoupled units is unstable
and the units display bursting behavior. For 7=0 or small and
for the values of the positive parameter g up to g= 1.4, the
bursting of the two units shows a weak type of synchrony.
The bursts occur at the same time in each of the two units but
the spikes within the bursts are not synchronized. This is
illustrated in Figs. 2(a) and 2(b). Larger time delay, for g in
the same interval, desynchronizes the occurrence of the
bursts. There are also domains of nonzero time lag such that
the stationary state is stabilized by the time delay. In this
case, the system is bistable, with a small stability domain of
initial conditions near the stationary solution, and the other
initial conditions leading to nonsynchronous bursting. So the
bursting dynamics for g <<1.4 cannot be synchronized by any
time lag. Instantaneous (7=0) coupling stronger then g
=~ 1.4 stabilizes the stationary solution, so that after an initial
period of bursting the system collapses onto the stationary
state. This is illustrated in Figs. 2(c) and 2(e). However, such
a stable stationary solution bifurcates for some nonzero time
lag and becomes unstable, as is illustrated in Figs. 2(d) and
2(f). A different stable solution supporting the bursting dy-
namics appears. This time-delay-induced bursting can be
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FIG. 2. Dynamics for (g, 7) parameters in Fig. 1, corresponding
to stable stationary state (c), (e) and asynchronous bursting (a), (b),
(d), (f). Values of (g,7), and the plotted curves are (a) (1,0) x;
(black), x, (light gray); (b) (1,0), x;—x5; (¢) (1.45,0) x; (black), x,
(light gray); (d) (1.45,30) x; (black), x, (light gray); (e) (1.7,35), x;
(black), x, (light gray); (e) (1.7,60), x; (black), x, (light gray).

completely asynchronous, but there is also a domain of suf-
ficiently large values of g and the corresponding 7 such that
the bursting is exactly synchronized. The asynchronous time-
delay-induced bursting is illustrated in Figs. 2(d) and 2(f).
The exact synchronization that occurs with increasing time
lag and for fixed g is illustrated in Fig. 3.

As pointed out, the (g, 7) parameter domain that implies
stability of the synchronization is also the parameter domain
where the trivial stationary solution of Egs. (6) is stable. In
this sense, the stabilization of synchronization by increasing
the time lag (for fixed sufficiently large g) corresponds to a
bifurcation of the trivial stationary solution of (6). Numerical
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evidence indicates that there is (a very small) interval of the
values of the bifurcation parameter 7 just below the critical
value where the long-term dynamics generated by (6) is that
of periodic oscillations with a very small amplitude around
the unstable stationary state (dx, Sy, dz)=(0,0,0). Increase
of 7 leads to the death of oscillations in Egs. (6), i.e., to the
stability of synchronous dynamics. On the other hand, de-
crease of 7 implies large oscillations in the system (6), and
strongly asynchronous dynamics of (3). The existence of a
small stable limit cycle for parameter values near the bifur-
cation is typical of the Hopf bifurcation of a stationary
solution.

It is important to investigate if the exactly synchronous
dynamics achieved with sufficiently large g and 7 is stable
under perturbations by random noise. To this end we have
studied numerically the system (3) with an additional ran-
dom term in the form of an independent white noise with
increment dW added to the membrane equations for each of
the neurons. Thus the equations for the x variable in (3) are
perturbed into

dx1=[y1+3x%—x?—z1+f(x1,x§)]dt+DdW, (7)

and analogously for x,. The resulting stochastic delay-
differential equations are solved numerically for different
small values of the noise parameter D, and for many differ-
ent realizations of the process. The conclusion suggested by
such computations, illustrated in Figs. 4(a) and 4(b), is that
the small noise induces only a proportionally small perturba-
tion of the synchronization manifold. Such stability to noisy
perturbations of the synchronous bursting, achieved by an
appropriate time lag, is a special property of the FTM cou-
pling and is not present in the system of bursting neurons
coupled by electrical synapses [12]. In the case of electrical
synapses, arbitrary small noise destroys the exact synchrony,
but it should be pointed out that the weaker form of syn-
chrony, in which the bursting periods almost coincide, sur-
vives small noise. The effects of the same noise on the syn-
chronization in the cases of electrical and FTM coupling are
compared in Figs. 4.

V. SUMMARY AND DISCUSSION

We have studied the exact synchronization of bursting
dynamics in a pair of realistic neurons with the FTM model
of the chemical synapse. The Hindmarsh-Rose neuron was
used as a model of each of the bursting units, and we have
included explicitly the time delay in the synapses. Numerical
calculations are used to solve the DDE’s of the model and
calculate the largest Lyapunov exponent for the equations of
perturbations transverse to the synchronization manifold.
These calculations served to determine the domains of the
values of the coupling strength and time delay that imply
asynchronous or exactly synchronous bursting dynamics for
initial states in some domain near the (unstable) stationary
state. We have concentrated on the effects of the synaptic
time delay on the stability of synchronous bursting dynam-
ics, and other effects of the time delay, like delay-induced
oscillation death, were observed but have not been studied in
any detail.
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FIG. 3. Synchronization by increase of the values of the time lag 7. Values of (g, 7), and the plotted curves are (a) (2,65) x; (black), x,
(light gray); (b) (2,85) x; (light gray), x;—x, (black); (c) (2,95) x; (light gray), x;—x, (black).

The following picture emerges from our calculations.
Weak coupling and small time-delays lead to bursting of the
coupled neurons, which is not exactly synchronous but can
be weakly synchronous in the sense that the times of bursts
of the two neurons roughly coincide. Increase in the time
delay cannot synchronize the bursting dynamics for the cou-
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pling strength below g=~1.4 For g>1.4 and small time lag
the stationary state becomes stable. However, increase of the
time lag leads to a bifurcation in which the stationary state
loses stability. The resulting bursting dynamics is asynchro-
nous for smaller time lags, but can become synchronized
with the time lag in a certain domain. Thus, we have dem-
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FIG. 4. Effect of small noise on the time-delay-induced synchronization of bursting for chemical FTM coupling (a), (b) and for electrical
[g(x;—x,); see [10,12]] coupling (c), (d). Presented are x; (black) and x;—x, (light gray). Values of the parameters are (a) D=0.001, g=2,
7=95; (b) D=0.01, g=2, 7=95; (c) D=0.001, g=0.1, 7=8; (d) D=0.01, g=0.1, 7=8.
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onstrated that the time delay in the model of the chemical
synapse leads to exact synchronization of bursting. Further-
more, such exactly synchronous bursting, achieved with the
coupling and time lag in a specific domain, is stable under
small stochastic perturbations. The existence of stochasti-
cally stable exact synchronization of bursting by delayed
chemical coupling is the main phenomenon described in this
paper

It would be interesting to study the relative importance of
time-delayed and instantaneous FTM coupling in the syn-
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chronization in more complicated networks [4] of noisy
bursting neurons.
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